

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2021 Course: EEE

Lesson plan

Name of the faculty : Er. Gaurav Kumar

Discipline : Electrical & Electronics Engineering

Semester : 7th Semester

Subject : PLC SCADA

Lesson Plan Duration: 20 weeks (From 4th AUG, 2020 to 20th Dec 2020)

Work Load (Lecture/ Practical) per week (in hours): Lecture-02, Practical-01

Week	Theory			Practical	
	Lecture day	Topic(Including assignment/test)	Practic al Day	Topic	
1 st	1 st	Need of SCADA system	1 st	To study Ladder logic programming of an industrial PLC like SEIMENS/ FATEK/MICROLOGIX	
	2 nd	PLC and its advantage			
2 nd	1 st	Distributed control Systems (DCS)	2 nd	To write program for control of Drinks	
	2 nd	Distributed control Systems (DCS)			
3 rd	1 st	Ladder Programming Basic	a rd	To write a Program for Car Parking.	
	2 nd	General definition and SCADA components	3 rd		
4 th	1 st	General definition and SCADA components	4 th	To study step step sequence in a PLC	
	2 nd	Hardware Architecture, Application & benefits, PLCs vs RTUs			
5 th	1 st	Software architecture	5 th	To write a program & interface simulated hardware	
	2 nd	Protocol detail		unit of Tank level control.	
6 th	1 st	Discrete control and Analog control	6 th	To write a program & interface & control a traffic light using PLC.	
	2 nd	Internet based SCADA display system			

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2021 Course: EEE

7^{th}	1 st	RTU Block diagram, MTU communication interface Components of control systems in SCADA	7 th	To write a program & interface & control a simulated elevator control using PLC
		Components of control systems in SCADA		using FLC
8 th	1 st 2 nd	Ladder Programming PLC programming language standards	8 th	To write a programme & interface & control a conveyer belt using PLC
		The programming ranguage standards		
9 th	1 st	Functional block, Structural text, instruction	9 th	To write a programme & interface & control speed of a DC motor using PLC
	2 nd	SCADA in Power Systems		
10 th	1 st	Main task in power systems	10 th	To write a programme & interface & temperature control system using analog outputs of a PLC.
	2 nd	Planning, operation, accounting		
11 th	1 st	Tasks of national control Centre	11 th	Generating station control room
	2 nd	Regional control Centre, security analysis		
12 th	1 st	AGC-SCADA	12 th	SCADA in generation, SCADA in Power Distribution
	2 nd	SCADA in generation		
13 th	1 st	SCADA in Power Grid	13 th	computer programs-generating planning
	2 nd	Supervisory Power Management		
14 th	1 st	Energy Management System	14 th	system studies, energy audit
	2 nd	power system operation states		
15 th	1 st	transmission planning	15 th	Distribution automation, DMS design
	2 nd	state estimation, load forecasting		
16 th	1 st	Utility distribution system design	16 th	Automatic mapping and facility management
	2 nd	Layout and construction and commissioning of substations		
17 th	1 st	Substation Automation and Equipment condition monitoring.	17 th	Distribution system design

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2021 Course: EEE

	2 nd	Automatic mapping and facility management		
18 th	1 st	Tracking, facility inventory, Facility mapping	18 th	Trouble call management, Customer level intelligent
	2 nd	system and equipment maintenance		automation system
19 th	1 st	computer level monitoring and control of distribution transformers	19 th	Internal Practical Exam
	2 nd	Substation and feeder level automation		
20 th	1 st	Previous year question paper	20 th	External Practical Exam
	2 nd	Previous year question paper		

Text Book

- 1 SCADA: by Stuart A. Boyer: IAS 1999
- 2 Switch Gear & Protection by S.S. Rao: Khanna Publication New Delhi
- 3 Power system Control Technology by Terson, Prentice Hall New Delhi

Reference Book

- 1. Planning for demand side management in the electric sector by J. Parikh, B. Reddy & R. Benerjee: TMH
- 2. Hand book of Telemetry of Remote control by Elliot L. Gruenberg MGH New Delhi
- 3. Electronics Communication by Roddy & Coolen
- 4. Optical fiber Communication by Gower: Eastern Publication, New Delhi
- 5. Electric Power system by S.L. Uppal
- 6. Power System Engineering by S K Gupta, Umesh Publication